LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced electrocatalytic properties in MoS2/MoTe2 hybrid heterostructures for dye-sensitized solar cells

Photo from wikipedia

Abstract In this work, the hybrid bilayer of molybdenum disulfide (MoS2)/molybdenum telluride (MoTe2) was constructed on fluorine-doped tin oxide glass (FTO), and dye-sensitized solar cells (DSSCs) employing the material as… Click to show full abstract

Abstract In this work, the hybrid bilayer of molybdenum disulfide (MoS2)/molybdenum telluride (MoTe2) was constructed on fluorine-doped tin oxide glass (FTO), and dye-sensitized solar cells (DSSCs) employing the material as counter electrode (CE) were implemented. The thickness of each layer of MoS2 and MoTe2 was tuned by changing the sputtering time to enhance DSSC performance. The DSSC with the MoS2/MoTe2 hybrid CE, exhibited a maximum power conversion efficiency (PCE) of 8.07% (6% for MoS2 and 7.25% for MoTe2 CE), and was comparable to one with Pt CE (8.33%). The observed good result of the MoS2/MoTe2 hybrid CE is ascribed to the synergistic properties between MoS2 and the metallic phase of MoTe2.

Keywords: sensitized solar; dye sensitized; mote2 hybrid; mote2; mos2 mote2

Journal Title: Applied Surface Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.