LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

KSCN-activation of hydrogenated NiO/TiO2 for enhanced photocatalytic hydrogen evolution

Photo from wikipedia

Abstract It was investigated the efficiency of hydrogen production from NiO-loaded TiO2 treated by methanol hydrogenation and functionalized by SCN ligand (SCN-M:(NiO/TiO2)). The effects of a p-n junction created between… Click to show full abstract

Abstract It was investigated the efficiency of hydrogen production from NiO-loaded TiO2 treated by methanol hydrogenation and functionalized by SCN ligand (SCN-M:(NiO/TiO2)). The effects of a p-n junction created between NiO and TiO2 were demonstrated to enhance significantly the overall photocatalytic performance. The optical and microstructural properties of SCN-M:(NiO/TiO2) were studied with ultraviolet–visible spectra (UV–Vis), photoluminescence (PL), Raman spectra, X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS). The atomic and electronic configurations of SCN-M:(NiO/TiO2) were investigated with analysis of the X-ray absorption near-edge structure (XAS) in situ under irradiation with Xe lamp incorporating a filter (AM 1.5G). An effective quantum yield of 1.34% for hydrogen production was attained with SCN-M:(NiO/TiO2). Quantum-chemical calculations revealed a synergistic decrease of the band gap upon loading Ni, Ni-linked O2 and anionic SCN-ligand binding. The optimal energy bandgap was decreased to 2.70 eV for (SCN/O2)-3Ni@TiO2, which reasonably supported the enhancement of H2 evolution.

Keywords: tio2; evolution; hydrogen; nio tio2; kscn activation; scn nio

Journal Title: Applied Surface Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.