Abstract Multilayer graphene on SiC is a promising material due to its compatibility with modern electronics technology. Herein, we demonstrate the growth of large-area (~10 × 5 mm2), high-quality (D/G area ratio: ~0.03)… Click to show full abstract
Abstract Multilayer graphene on SiC is a promising material due to its compatibility with modern electronics technology. Herein, we demonstrate the growth of large-area (~10 × 5 mm2), high-quality (D/G area ratio: ~0.03) epitaxial graphene on 4H-SiC(0001) using a high-power continuous laser with an extremely fast heating rate of 500 °C/s. As the growth temperature rises from 1550 °C to 1780 °C, the number of graphene layers increases from three to more than ten. The obtained graphene/SiC samples are highly conductive, with a sheet resistance of as low as ~0.43 Ω/sq. The high power and fast heating rate of the laser contribute to the formation of large-area and low-sheet-resistance graphene. The high conductivity makes graphene/SiC a very promising material for applications in conductive films. The growth mechanism of graphene and the influence of the structural properties of graphene on the conductivity are also discussed.
               
Click one of the above tabs to view related content.