LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strain relaxation, extended defects and doping effects in InxGa1-xN/GaN heterostructures investigated by surface photovoltage

Photo by shapelined from unsplash

Abstract We have analysed electrical properties of extended defects and interfaces in fully strained and partially relaxed InxGa1-xN/GaN heterostructures by means of Kelvin probe force microscopy and surface photovoltage spectroscopy.… Click to show full abstract

Abstract We have analysed electrical properties of extended defects and interfaces in fully strained and partially relaxed InxGa1-xN/GaN heterostructures by means of Kelvin probe force microscopy and surface photovoltage spectroscopy. The study highlights the role of indium incorporation and Si doping levels on the charge state of extended defects including threading dislocations, V defects and misfit dislocations. Surface potential maps reveal that these defects are associated with a different local work function and thus could remarkably alter electron-hole recombination mechanisms of InxGa1-xN/GaN layers locally. Surface photovoltage spectra clearly demonstrate the role of misfit dislocations and high Si-doping level on interface recombination process. The interplay between Si doping level and In% on the electronic properties of the extended defects has been also clarified.

Keywords: gan heterostructures; extended defects; surface photovoltage; inxga1 gan

Journal Title: Applied Surface Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.