Abstract The one-dimensional nanostructures of antimony sulfoiodide (SbSI) have received in last decade a great attention due to their outstanding photoferroelectric properties combined with narrow energy band gap beneficial for… Click to show full abstract
Abstract The one-dimensional nanostructures of antimony sulfoiodide (SbSI) have received in last decade a great attention due to their outstanding photoferroelectric properties combined with narrow energy band gap beneficial for effective conversion of visible light into electric signal. This paper reports for the first time a simple and fast route for fabrication of photovoltaic devices based on SbSI nanowires. This method involves sonochemical synthesis of SbSI nanowires and spin-coating SbSI-polyacrylonitrile (PAN) composite, on indium tin oxide (ITO) substrate. In order to promote efficient charge transfer titanium dioxide (TiO2) and poly(3-hexylthiophene) (P3HT) were applied as an electron and hole transporting layers, respectively. Proposed method can be realized at mild conditions and does not require any additional high temperature treatment in contrast to other methods known for fabrication of SbSI photovoltaic structures. Fabricated structures exhibited an average short-circuit current density of 1.84(20) µA/cm2 and open circuit voltage of 69(13) mV under a white light illumination with power density of 100 mW/cm2. SbSI nanowires as lead-free nanomaterials are promising for solar energy harvesting and an application in photodetectors, that can operate in self-powered mode.
               
Click one of the above tabs to view related content.