LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of silver-nanoparticles composite with highly catalytic activity supported on the reduced graphene oxide

Photo by onurbinay from unsplash

Abstract Ag-based catalyst rGO/PDA/Ag, which is supported on the reduced graphene oxide (rGO), have been synthesized under mild conditions by an environment-friendly and facile strategy through self-polymerization between dopamine (DPA)… Click to show full abstract

Abstract Ag-based catalyst rGO/PDA/Ag, which is supported on the reduced graphene oxide (rGO), have been synthesized under mild conditions by an environment-friendly and facile strategy through self-polymerization between dopamine (DPA) and GO as well as Ag nanoparticles (NPs). The relevant structural characterizations were performed by Raman, XRD, XPS, SEM and TEM. The influence of the amount of poly(dopamine) (PDA) and Ag on the catalytic performance of rGO/PDA-x/Ag-y (x = 1.0, 1.5, 2.0, 2.5, y = 5, 10, 15, 20) catalysts were systematically investigated towards the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Among these catalysts, the fabricated rGO/PDA-2/Ag-15 catalyst exhibits the best catalytic performance. Recycling results demonstrate the catalyst possesses excellent stability. Furthermore, the catalytic degradation of methylene blue (MB) is also evaluated by using the developed rGO/PDA-2/Ag-15 catalyst at room temperature without using light resource, indicating that the rGO/PDA-2/Ag-15 catalyst shows excellent performance for the degradation performance of MB.

Keywords: rgo pda; rgo; pda; reduced graphene; catalyst; supported reduced

Journal Title: Applied Surface Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.