LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bloch surface waves biosensing in the ultraviolet wavelength range – Bragg structure design for investigating protein adsorption by in situ Kretschmann-Raether ellipsometry

Photo from wikipedia

Abstract We designed a Bragg mirror structure with an SiO2 top layer to create a resonance in the ultraviolet wavelength range, near the absorption peak position of various proteins. We… Click to show full abstract

Abstract We designed a Bragg mirror structure with an SiO2 top layer to create a resonance in the ultraviolet wavelength range, near the absorption peak position of various proteins. We demonstrate that the wavelength of enhanced sensitivity can be adjusted by proper design of the 1D photonic structure. The possibility to design the wavelength of enhanced sensitivity supports measurements of better selectivity, optimized for the absorption of the target material. Since the width of the resonant peak in the reflectance spectra can be sharper than those of plasmonics, and they can be positioned at more favourable regions of the instrument and material (e.g., in terms of intensity or selectivity), the sensitivity can exceed those of plasmon-enhanced measurements. In this study we demonstrate the main features of the concept at the example of in situ spectroscopic ellipsometry of fibrinogen adsorption in the Kretschmann-Raether configuration. We realized a resonant peak with a full width at half maximum of 3 nm near the wavelength of 280 nm, which coincides with the absorption maximum of fibrinogen. The influence of depolarization and surface roughness on the measurements, and the potential for improving the current experimental detection limit of 45 pg/mm2 is also discussed.

Keywords: ultraviolet wavelength; wavelength range; surface; structure; wavelength; design

Journal Title: Applied Surface Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.