Abstract Carbon dioxide electrochemical reduction reaction (CO2RR) with proton-electron pair delineates an intriguing prospect for converting CO2 to useful chemicals. However, CO2RR is urgently required low-cost and high efficient electrocatalysts… Click to show full abstract
Abstract Carbon dioxide electrochemical reduction reaction (CO2RR) with proton-electron pair delineates an intriguing prospect for converting CO2 to useful chemicals. However, CO2RR is urgently required low-cost and high efficient electrocatalysts to overcome the sluggish reaction kinetic and ultralow selectivity. Here by means of first-principle computations, the geometric constructions, electronic structures, and CO2RR catalytic performance of boron- and nitrogen-doped graphdiyne anchoring a single Cu atom (Cu@N-doped GDY and Cu@B-doped GDY) were systematically investigated. These eight Cu@doped GDY complexes possess excellent stability. The adsorption free energies showed that the eight Cu@doped GDY could spontaneously capture CO2 molecules. The Cu@N-doped GDY monolayers exhibit a more efficient catalytic performance for CO2 reduction compared to Cu@B-doped GDY because of the differences in adsorption energies and charge transfer. The calculations further indicated that the Cu@Nb-doped GDY complex possesses excellent catalytic character toward CO2RR with the same limiting potentials of −0.65 V for production of HCOOH, CO, OCH2, CH3OH, and CH4. Charge analysis indicated that the *OCHO and *COOH species gain more electrons from Cu@N-doped GDY than from Cu@B-doped GDY complexes due to different electronegativity of coordinated element. Our findings highlighted the electronegativity of coordinated elements for the design of atomic metal catalysts.
               
Click one of the above tabs to view related content.