LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functionally integrated g-C3N4@wood-derived carbon with an orderly interconnected porous structure

Photo from wikipedia

Abstract The synthesis of highly orderly hierarchical porous functional materials has always been a significant challenge in materials science. Herein, we employed natural materials to fabricate graphite carbonitride@wood-derived carbon (g-C3N4@WDC)… Click to show full abstract

Abstract The synthesis of highly orderly hierarchical porous functional materials has always been a significant challenge in materials science. Herein, we employed natural materials to fabricate graphite carbonitride@wood-derived carbon (g-C3N4@WDC) with a micro-nano scale ordered interconnection porous structure using a simple two-step method and achieved the corresponding application dimensions. g-C3N4@WDC has the unique advantages of a wide pore size distribution, high ordered degree range, low manufacturing cost, and excellent mechanical strength. Furthermore, we have shown the heterotopic functional integration of the sample in photocatalysis and supercapacitors. As a result, excellent photocatalytic efficiency and high electrochemical capacity are obtained. These attributes meets the targets of green chemistry and sustainable development. This work is a demonstration of functionally integrated g-C3N4@WDC with an ordered interconnection porous structure and paves the way for using natural structures to prepare materials with high nanostructural-control and multifunctional integration for use in energy storage, adsorption, photocatalysis, environmental rehabilitation, oil–water separation, or other applications.

Keywords: derived carbon; wood derived; porous structure; functionally integrated; c3n4

Journal Title: Applied Surface Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.