LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Significant improvement of ferroelectricity and reliability in Hf0.5Zr0.5O2 films by inserting an ultrathin Al2O3 buffer layer

Photo from wikipedia

Abstract Due to the full compatibility with modern complementary-metal-oxide-semiconductor (CMOS) technology and scalable capability, HfO2-based ferroelectric films have been considered as the most potential materials in micro-nano non-volatile memories. However,… Click to show full abstract

Abstract Due to the full compatibility with modern complementary-metal-oxide-semiconductor (CMOS) technology and scalable capability, HfO2-based ferroelectric films have been considered as the most potential materials in micro-nano non-volatile memories. However, despite great achievements, the existence of poor interface still poses a great threat to the improve of ferroelectricity and polarization stability. Here, the excellent ferroelectricity and reliability in the 21.6 nm-thick Hf0.5Zr0.5O2 (HZO) films are reported through interface modification by inserting an ultrathin Al2O3 (AO) layer using atomic layer deposition method. Improved polarization and stability are achieved in HZO/AO bilayers with the AO thickness below 2.4 nm. When the thickness of AO dielectric layer is 1.6 nm, the maximum remnant polarization reaches 30.19 μC/cm2 and the leakage current is decreased by 2∼3 orders of magnitude. The strong interface polarization resulted from the electrostatic coupling between HZO and AO films contributes to the improved ferroelectricity of HZO films. Furthermore, the AO layer, as a dielectric capacitor after switching or during non-switching, can block the electron injection from bottom electrode and therefore improve the cycling reliability. This work demonstrates that an inlaid dielectric layer with much lower dielectric constant can significantly enhance the electrical properties of ferroelectric films.

Keywords: layer; ferroelectricity; hf0 5zr0; ferroelectricity reliability; 5zr0 5o2

Journal Title: Applied Surface Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.