LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unravelling the bulk and interfacial charge transfer effects of molybdenum doping in BiVO4 photoanodes

Abstract The role of Mo6+ doping on the photoelectrochemical (PEC) performance of BiVO4 photoanodes was investigated both in the presence and in the absence of sulfite as hole scavenger. Optically… Click to show full abstract

Abstract The role of Mo6+ doping on the photoelectrochemical (PEC) performance of BiVO4 photoanodes was investigated both in the presence and in the absence of sulfite as hole scavenger. Optically transparent, flat BiVO4 photoanodes containing different amounts of Mo6+ dopant were synthesized by spin coating. An increase of Mo6+ dopant amount was found to both improve the electron transport in the BiVO4 bulk by increasing its conductivity, as unequivocally ascertained when employing a Ni/Fe oxyhydroxide co-catalyst, and facilitate the charge transfer at the electrode/electrolyte interface in water oxidation, in the absence of hole scavenger. On the other hand, increasing amounts of the Mo6+ dopant in BiVO4 induced an unexpected decrease in PEC performance per unit surface area in sulfite oxidation, resulting from enhanced interfacial charge transfer resistance, as demonstrated by electrochemical impedance spectroscopy. First evidence is thus provided of a different behaviour observed upon Mo6+ doping of BiVO4 depending on the nature of the involved electron donor species, together with an intriguing multifaceted role played by Mo6+ doping in enhancing the PEC performance of modified BiVO4 electrodes.

Keywords: bivo4; mo6; bivo4 photoanodes; charge transfer

Journal Title: Applied Surface Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.