LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Significantly enhanced Fenton-based oxidation processes with CuS-Cu9S8 as co-catalyst by accelerating the Fe3+/Fe2+cycles

Photo by chrisbair from unsplash

Abstract The co-catalyst plays an important role for improving the catalysis efficiency in Fenton system. In this paper, a new co-catalyst, CuS-Cu9S8 micro-flower was successfully prepared by a facilely hydrothermal… Click to show full abstract

Abstract The co-catalyst plays an important role for improving the catalysis efficiency in Fenton system. In this paper, a new co-catalyst, CuS-Cu9S8 micro-flower was successfully prepared by a facilely hydrothermal method. The effect of co-catalysis for CuS-Cu9S8 micro-flower was evaluated by degradation of Rhodamine B (RhB) in Fenton system, and the RhB solution could be degraded 90% in 15 min in the CuS-Cu9S8 co-catalytic Fenton system under optimal condition, which is apparently better than that of the conventional Fenton system (59%). And EPR result shows that the unsaturated S atoms on the surface of CuS-Cu9S8 can capture protons to form H2S and expose more Cu+/Cu2+ active sites on the surface of CuS-Cu9S8 flower. The high co-catalytic activity of CuS-Cu9S8 on pollutant degradation can be attributed to the acceleration for the rate-limiting Fe2+/Fe3+conversion by the exposed Cu+ /Cu2+ redox pairs. The cycle experiments show that CuS-Cu9S8 has excellent chemical stability and reusability.

Keywords: cus cu9s8; fenton system; cu9s8

Journal Title: Applied Surface Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.