Abstract Developing strategies for the production of porous particles with controllable structures using a spray-drying method has attracted attention of researchers for decades. Although many papers have reported their successful… Click to show full abstract
Abstract Developing strategies for the production of porous particles with controllable structures using a spray-drying method has attracted attention of researchers for decades. Although many papers have reported their successful production of porous particles using this method, information on how to create and control the porous structures as well as what parameters involving and what formation mechanism occurring during the synthesis process are still not clear. To meet these demands, the present review covers strategies in the spray-drying developments for the fabrication of porous particles with controllable structure. This information is important for optimizing the production of porous particles with desirable properties. Regulation of process conditions and precursor formulations are also explained, including composition, type, and physicochemical properties of droplet and raw components used (i.e., host component, template, and solvent). The electrostatic interactions between the individual components and the droplets are also presented, while this information tends to be neglected in the conventional spray-drying process. To clarify how the porous particles are designed, current experimental results completed with illustrations for the proposal particle formation mechanism are presented. The review also completed with the opportunities and potential roles of the changing porous structures in practical uses. This review would provide information on how to produce porous particles that can be used for advanced functional materials, such as catalysts, adsorbents, and sensors.
               
Click one of the above tabs to view related content.