LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile synthesis and in vitro bioactivity of radial mesoporous bioactive glass with high phosphorus and calcium content

Photo from wikipedia

Abstract A novel uniform monodispersed radial mesoporous bioactive glass nanosphere (MBG) with high phosphorus and calcium content has been successfully synthesized. The synthesis was first taken place in a cyclohexane-water… Click to show full abstract

Abstract A novel uniform monodispersed radial mesoporous bioactive glass nanosphere (MBG) with high phosphorus and calcium content has been successfully synthesized. The synthesis was first taken place in a cyclohexane-water biphasic stratification reaction system, which fabricated the radial mesoporous SiO2-P2O5 nanosphere (SPN) using hexadecyltrimethyl ammonium bromide (CTAB) as a template agent and triethanolamine (TEA) as a hydrolysis catalyst. Solid reactions were then carried out to synthesize SiO2-CaO-P2O5 MBG using SPN as both the silicon source and phosphorus source, and Ca(NO3)2 as the calcium source. The prepared MBG not only displayed the radial structure and high specific surface area (~321 m2/g), but also had high phosphorus and calcium content. The results of energy dispersive spectrometer (EDS) demonstrated that P2O5 content was enhanced by properly increasing the reaction temperature. The in vitro bioactivity test showed that MBG had an excellent ability of inducing apatite formation. Furthermore, the MBG showed excellent biocompatibility at a low concentration of 50–100 μg/mL in vitro, and it would have a promising prospect as drug delivery system for bone tissue regeneration.

Keywords: phosphorus calcium; high phosphorus; content; phosphorus; radial mesoporous; calcium

Journal Title: Advanced Powder Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.