LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A new approach for synthesis of well-crystallized Y zeolite from bentonite and rice husk ash used in Ni-Mo/Al2O3-Y hybrid nanocatalyst for hydrocracking of heavy oil

Photo by primal_harmony from unsplash

Abstract A series of Ni-Mo/Al2O3-Y hybrid nanocatalysts were synthesized for hydrocracking of heavy oil. The well crystallized Y zeolite was synthesized from mineral bentonite and rice husk ash by a… Click to show full abstract

Abstract A series of Ni-Mo/Al2O3-Y hybrid nanocatalysts were synthesized for hydrocracking of heavy oil. The well crystallized Y zeolite was synthesized from mineral bentonite and rice husk ash by a two-step synthesis method. The solution combustion method was applied to develop a fast and simple technique for preparing of alumina-supported NiMo catalyst with high hydrodesulfurization activity. Such activity may be due to the morphological and textural modification as a consequence of the release of a high amount of exhaust gases during the combustion process. The XRD analysis revealed that the P zeolite was a competitive phase presented in the obtained product that could be eliminated using a two-step synthesis method. Compared to a one-step method, the pore volume and external surface area of the synthesized zeolite by the two-step method increased by 74 and 62%, respectively. The hydrocracking results illustrated that the synthesized zeolite was able to convert 66% of heavy oil to lighter products and reduce the viscosity up to 60%. Furthermore, the amount of sulfur removal was found to be 58%. The spent catalyst characterization suggested that the type of deposited coke was hard coke with the unsaturated aromatic ring which could be responsible for the pores blockage after the cracking reaction.

Keywords: synthesis; oil; al2o3 hybrid; heavy oil; hydrocracking heavy; zeolite

Journal Title: Advanced Powder Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.