LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isotopic and elemental profiling to trace the geographic origins of farmed and wild-caught Asian seabass (Lates calcarifer)

Photo from wikipedia

Abstract Demand for seafood, farmed or wild-caught, is growing globally. Consequently, seafood provenance is increasingly important to regulatory bodies, market chain actors and consumers. The limitations of current seafood provenance… Click to show full abstract

Abstract Demand for seafood, farmed or wild-caught, is growing globally. Consequently, seafood provenance is increasingly important to regulatory bodies, market chain actors and consumers. The limitations of current seafood provenance methods can be overcome using complementary or standalone nuclear techniques. This study focuses on determining the production method and geographic origin of Asian seabass (Lates calcarifer) using Stable Isotope Analysis (SIA) and X-ray fluorescence (XRF) through Itrax. The data were analysed using three different statistical methods; univariate and multivariate analysis, randomForest and LDA. The SIA model had accuracy of 84% when distinguishing the production methods and geographic origin of the L. calcarifer. The model using elemental analysis from the XRF returned an accuracy of 72%, and a combined SIA and elemental model was 81% accurate in determining provenance. However, the SIA model had two incorrect predictions compared to one incorrect prediction in the elemental model, while the combined model had no incorrectly predicted samples. The results of this study highlight that a combination of both SIA and elemental profiling through Itrax is ideal for seafood provenance.

Keywords: lates calcarifer; asian seabass; seabass lates; model; wild caught; farmed wild

Journal Title: Aquaculture
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.