LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microcystin-LR bioconcentration induces antioxidant responses in the digestive gland of two marine bivalves Crassostrea gigas and Mytilus edulis.

Photo from wikipedia

Microcystins (MCs) are a major group of potent cyanobacterial toxins found in freshwater and even brackish waterbodies. To understand the putative correlation between bioconcentration of MCs and antioxidant responses of… Click to show full abstract

Microcystins (MCs) are a major group of potent cyanobacterial toxins found in freshwater and even brackish waterbodies. To understand the putative correlation between bioconcentration of MCs and antioxidant responses of the digestive gland of bivalves, Pacific oyster Crassostrea gigas and blue mussel Mytilus edulis were exposed to different concentrations (0.1, 1, 10 and 20μgL-1) of MC-Leucine-Arginine (LR) for seven days. MC-LR bioconcentrated in the digestive glands of both bivalves during exposure period. The levels were slightly reduced when the bivalves were exposed to seawater during depuration (7days), while approximately 0.1μgL-1 of MC-LR was observed in the 10 and 20μgL-1 exposed bivalves at the end of depuration. Intracellular malondialdehyde (MDA) and glutathione (GSH) levels were significantly elevated in the 10 and 20μgL-1 exposed bivalves at 7day, and the levels were maintained during depuration in both bivalves. Overall, significant higher levels of enzymatic activities of antioxidant defense systems such as glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed in the 10 and 20μgL-1 exposed bivalves. Interestingly, most of higher levels of Pacific oyster were detected at exposure period, while blue mussel showed higher levels at depuration phase, suggesting a species-specific sensitivity upon MC-LR. These patterns were correlated with the bioconcentration patterns of MC-LR as Pacific oyster was highly accumulated by MC-LR during exposure period, but blue mussel showed prolonged high levels of MC-LR for depuration phase. Our results will be useful to understand species-specific bioconcentration of MC-LR in bivalves and their effects on intracellular oxidative status via accumulation.

Keywords: antioxidant responses; bioconcentration; crassostrea gigas; digestive gland; responses digestive; mytilus edulis

Journal Title: Aquatic toxicology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.