Elevated concentrations of nitrite develop occasionally in various aquatic habitats and aquaculture facilities, providing a potential danger for freshwater fish that take up nitrite via the gill chloride uptake mechanism.… Click to show full abstract
Elevated concentrations of nitrite develop occasionally in various aquatic habitats and aquaculture facilities, providing a potential danger for freshwater fish that take up nitrite via the gill chloride uptake mechanism. We studied the uptake, effects and metabolism of nitrite in blood, heart and skeletal muscle at two temperatures in striped catfish Pangasianodon hypophthalmus, a facultative air-breathing fish that is heavily cultivated in Southeast Asia. Exposure to 0.8 mM ambient nitrite increased blood [nitrite] and [methaemoglobin] (metHb) to high values at day 1, but values subsequently decreased towards controls at day 7. Blood [nitrite] and metHb content were unexpectedly higher at 27 °C (∼1.2 mM; 69% at day 1) than at 33 °C (∼0.9 mM; 55%), reflecting a lower nitrite uptake at the highest temperature, possibly via an increased reliance on air-breathing relative to water-breathing with temperature increase. A large fraction of the nitrite taken up was effectively eliminated by being detoxified to nitrate. Further, erythrocyte metHb reductase activity was increased during nitrite exposure, efficiently reducing metHb to functional haemoglobin. The uptake of nitrite into white skeletal musculature (main part of the fish) was much lower than into heart tissue. While heart [nitrite] was close to blood plasma levels, muscle [nitrite] peaked at ∼0.2 mM at day 1 and subsequently declined to ∼0.05 mM at day 7, which is below levels reported in various commercial cured meat products. Nitrite was partly metabolized to iron-nitrosyl, S-nitroso and N-nitroso compounds. The increase in nitros(yl)ated compounds was marginal in skeletal muscle and more pronounced in heart tissue.
               
Click one of the above tabs to view related content.