LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inorganic mercury and dietary safe feed additives enriched diet impacts on growth, immunity, tissue bioaccumulation, and disease resistance in Nile tilapia (Oreochromis niloticus).

Photo from wikipedia

Little is known about the impacts of dietary exposure to inorganic mercury (Hg) for a long duration on the health indicators, growth, and disease resistance in Oreochromis niloticus. Accordingly, the… Click to show full abstract

Little is known about the impacts of dietary exposure to inorganic mercury (Hg) for a long duration on the health indicators, growth, and disease resistance in Oreochromis niloticus. Accordingly, the current study was designed to assess the effects of Hg contaminated diets on blood biochemistry, growth, chemical composition, Hg bioaccumulation in the tissues, histopathology of liver and head kidneys, and disease resistance to Aeromonas hydrophila of O. niloticus. Also, the efficiency of citronella oil, geranium oil (GO), curcumin (CUR), Bacillus toyonensis (BT), and Bacillus subtilis (BS) as dietary supplements on reversing the negative impacts of Hg were assessed. A total of 240 tilapia fingerlings were assigned to eight dietary treatments fed on the basal diet (G1), G1 diet contaminated with 50 ppm Hg (G2), whereas the other groups fed the G2 diet and enriched with 400 mg CO (G3), 400 mg GO (G4), 200 mg CUR (G5), 7 × 107 cells BT (G6), 7 × 107 cells BS (G7), and 7 × 107 BT + BS/ kg diet (G8) for 16 weeks. The obtained results showed that fish fed on the G2 diet had significantly impaired growth performance indicators, blood parameters, and resistance to bacterial infection compared with fish in the control group. Additionally, distinct pathological perturbations in liver and head kidneys were observed. In contrast, fish groups G3 to G8 had a significant enhancement in the growth performance, Hg bioaccumulation in fish tissues, blood biochemistry, and resistance against A. hydrophila infection compared with fish in the G2 group. Maximum improvement was recorded in G5, G6, and G8. Conclusively, from both health and an economic point of view, these results suggested that several benefits might be gained by adding these additives, especially CUR, BT, and BT + BS, on growth enhancement and ameliorating Hg negative impacts in O. niloticus.

Keywords: biochemistry; disease resistance; resistance; inorganic mercury; growth; bioaccumulation

Journal Title: Aquatic toxicology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.