LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization and modeling of synthesis parameters of neodymium(III) bromide by dry method using full factorial design analysis

Photo by museumsvictoria from unsplash

Abstract The synthesis of neodymium(III) bromide (NdBr3) by sintering brominating of neodymium oxide (Nd2O3) with ammonium bromide (NH4Br) was investigated. The influence of various synthesis parameters (temperature, contact time and… Click to show full abstract

Abstract The synthesis of neodymium(III) bromide (NdBr3) by sintering brominating of neodymium oxide (Nd2O3) with ammonium bromide (NH4Br) was investigated. The influence of various synthesis parameters (temperature, contact time and stoichiometry) on the reaction yield was studied and optimized. The main interaction effects of the synthesis parameters on the reaction yield were also determined by a full 23 factorial designs with six replicates at the center point. This study showed that the optimum conditions for the synthesis of NdBr3 are following: contact time t = 60 min, stoichiometry in moles Nd2O3:NH4Br = 1:24 and temperature T = 400 °C. The reaction yield for these parameters was equal to 97.80%. The first order model was obtained to predict the reaction yield as a function of these three parameters. It was shown that all parameters have a significant positive influence on reaction yield. In addition it was pointed out also that the interaction effects between them are significant.

Keywords: neodymium iii; iii bromide; synthesis parameters; reaction yield; synthesis

Journal Title: Arabian Journal of Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.