LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solar light-induced photodegradation of chrysene in seawater in the presence of carbon-modified n-TiO2 nanoparticles

Photo from wikipedia

Abstract Photocatalytic degradation of chrysene in polluted seawater was successfully achieved under illumination of natural sunlight using carbon modified titanium oxide (C-TiO2) nanoparticles. The morphological and structural characteristics of the… Click to show full abstract

Abstract Photocatalytic degradation of chrysene in polluted seawater was successfully achieved under illumination of natural sunlight using carbon modified titanium oxide (C-TiO2) nanoparticles. The morphological and structural characteristics of the as-synthesized nanoparticles were investigated by X-ray diffraction (XRD), UV–Vis spectra, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS). The characterization results confirmed the successful incorporation of carbon into C-TiO2 nanoparticles. As a result of C-modification, a significant enhancement of the photocatalytic degradation efficiency was observed for C-TiO2, compared with pure TiO2. In order to optimize the operating parameters, the impacts of catalyst loading and pH on the photocatalytic degradation of chrysene were investigated. The best degradation rate was obtained at pH 3 and C-TiO2 loading of 1.0 g L−1. The photodegradation of chrysene in seawater by using C-TiO2 was found to follow a pseudo first-order kinetics in terms of the Langmuir-Hinshelwood model.

Keywords: spectroscopy; photodegradation chrysene; chrysene; tio2 nanoparticles; carbon modified

Journal Title: Arabian Journal of Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.