LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Porous multifunctional fluoropolymer composite foams prepared via humic acid modified Fe3O4 nanoparticles stabilized Pickering high internal phase emulsion using cationic fluorosurfactant as co-stabilizer

Photo by martindorsch from unsplash

Abstract Fluoropolymers are very important owing to their excellent application performances, especially in extreme conditions. On the other hand, the preparation of porous fluoropolymers is a difficult task due to… Click to show full abstract

Abstract Fluoropolymers are very important owing to their excellent application performances, especially in extreme conditions. On the other hand, the preparation of porous fluoropolymers is a difficult task due to unavailability of suitable surfactants as well as tedious synthesis steps. Here we prepared multifunctional porous fluoropolymer composite foams with a simple process of “high internal phase emulsion (HIPE)” by using humic acid modified iron oxide nanoparticles (HA-Fe3O4 NPs) and cationic fluorosurfactant (CFS) (PDMAEMA-b-PHFBA) as co-stabilizer. The inclusion of HA-Fe3O4 NPs in the system made fluoro-HIPE more stable than the emulsion prepared using only CFS or other conventional stabilizers. Morphology of the prepared polyHIPE was easily controlled by altering the concentration of HA-Fe3O4 and/or CFS in the original formulation. Adjustment of the porous structure with open/close cells was performed and the average diameter of the pores tuned between 4.9 and 23 μm. With the increase in specific surface area by using nanoparticles (NPs) and CFS as co-surfactants, Pickering HIPE monoliths adsorbed double amount of oil compared to foams based solely on HIPE template. Multiple functional groups were bound onto Fe3O4 NPs through HA modification that made the fluoro-monolith capable of adsorbing dye, i.e. methylene blue, from water. A simple centrifugation enabled regeneration of the oil soaked foams and adsorption capacity was not decreased after 10 adsorption/regeneration cycles.

Keywords: phase emulsion; internal phase; high internal; composite foams; fluoropolymer composite; emulsion

Journal Title: Arabian Journal of Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.