LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanistic roles of substitutional Fe dopants on catalytic acetylene-sensing process of flame-made SnO2 nanoparticles

Photo from wikipedia

Abstract In this work, flame-spray-made Fe-doped SnO2 nanoparticles were comprehensively investigated for acetylene (C2H2) detection and the roles of Fe dopants on sensing mechanisms were explored. The sensing material properties… Click to show full abstract

Abstract In this work, flame-spray-made Fe-doped SnO2 nanoparticles were comprehensively investigated for acetylene (C2H2) detection and the roles of Fe dopants on sensing mechanisms were explored. The sensing material properties were evaluated by X-ray diffraction, electron microscopy, N2 adsorption-desorption analysis, X-ray absorption/photoemission spectroscopy and UV–visible spectroscopy. The structural characterizations confirmed that the nanoparticles had a tetragonal nanocrystalline SnO2 phase and Fe3+ dopant species formed a solid solution with SnO2 lattice. The sensors were measured towards 0.15–3 vol% C2H2 in dry air at various working temperatures (200–350 °C). Gas-sensing data demonstrated that the optimal Fe doping level of 0.1 wt% led to a substantially enhanced response of 748.7 toward 3 vol% C2H2 with a decent response time of 2.5 s at the optimal working temperature of 300 °C. Furthermore, the optimal SnO2 sensor demonstrated high C2H2 selectivity against C2H5OH, NO2, H2, NH3, CO2, NO, H2S, CH4, C2H4O, C2H4 and N2O. Additional detailed analyses suggested that Fe3+ species played catalytic roles for enhancing C2H2 dissociation and oxidation. Thus, the Fe-doped SnO2 sensors were highly promising for selective and sensitive detections of acetylene in industrial applications.

Keywords: sno2 nanoparticles; spectroscopy; sno2; flame; c2h2; acetylene

Journal Title: Arabian Journal of Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.