LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual-emitter polymer carbon dots with spectral selection towards nanomolar detection of iron and aluminum ions

Photo by aleexcif from unsplash

Abstract We report on the spectral selection of excitation wavelength towards selective detection of aluminum and iron ions using dual emission polymer carbon dots (PCDs). PCDs were prepared from glucose… Click to show full abstract

Abstract We report on the spectral selection of excitation wavelength towards selective detection of aluminum and iron ions using dual emission polymer carbon dots (PCDs). PCDs were prepared from glucose and dilute sulfuric acid using one-pot solvothermal method. The PCDs emit blue light at 480 nm when excited at 340 nm, while emit red light at 590 nm when excited with 400 nm. Spectral selection (selection of excited state) showed sensitivity enhancement for detection of some metal ions. The PCDs showed fluorescence enhancement when combined with Al3+ ions with hypsochromic shift centered at 470 nm when excited at 440 nm. While the PCDs selectively quenched via addition of Fe3+ ions, when excited at 400 nm. The wavelength selection of the same carbon dots increases signal to noise ration. The PCDs showed thermo-sensing behavior from 0 oC to 90 oC with reasonably good reversibility. The PCDs acted as fluorescent probes for multicolor (green and yellow) imaging of MCF-7 cells while not inducing cell death, which indicates that the PCDs are biocompatible and nontoxic to the cells. Therefore, the PCDs can be used as probes for cell-imaging applications in vitro and in vivo. The PCDs proved to be a multi-purpose polymer carbon nanomaterial that can used for pharmaceutical analysis, bio-imaging and thermo-sensing while providing high accuracy, selectivity and a limit of detection in the nano range.

Keywords: detection; spectral selection; pcds; selection; polymer carbon

Journal Title: Arabian Journal of Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.