LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Salivary gland cell aggregates are derived from self-organization of acinar lineage cells.

Photo from wikipedia

OBJECTIVE The objective of this study was to characterize the mechanism by which salivary gland cells (SGC) aggregate in vitro. DESIGN Timelapse microscopy was utilized to analyze the process of… Click to show full abstract

OBJECTIVE The objective of this study was to characterize the mechanism by which salivary gland cells (SGC) aggregate in vitro. DESIGN Timelapse microscopy was utilized to analyze the process of salivary gland aggregate formation using both primary murine and human salivary gland cells. The role of cell density, proliferation, extracellular calcium, and secretory acinar cells in aggregate formation was investigated. Finally, the ability of cells isolated from irradiated glands to form aggregates was also evaluated. RESULTS Salivary gland cell self-organization rather than proliferation was the predominant mechanism of aggregate formation in both primary mouse and human salivary gland cultures. Aggregation was found to require extracellular calcium while acinar lineage cells account for ∼80% of the total aggregate cell population. Finally, aggregation was not impaired by irradiation. CONCLUSIONS The data reveal that aggregation occurs as a result of heterogeneous salivary gland cell self-organization rather than from stem cell proliferation and differentiation, contradicting previous dogma. These results suggest a re-evaluation of aggregate formation as a criterion defining salivary gland stem cells.

Keywords: acinar; gland cell; salivary gland; gland; self organization

Journal Title: Archives of oral biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.