LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Betamethasone suppresses the inflammatory response in LPS-stimulated dental pulp cells through inhibition of NF-κB.

Photo by _louisreed from unsplash

OBJECTIVE This study aimed to investigate the anti-inflammatory effect of betamethasone on LPS-stimulated human dental pulp stem cells (DPSCs) and its associated mechanism. The osteo-/odontogenic differentiation and osteoclast effect of… Click to show full abstract

OBJECTIVE This study aimed to investigate the anti-inflammatory effect of betamethasone on LPS-stimulated human dental pulp stem cells (DPSCs) and its associated mechanism. The osteo-/odontogenic differentiation and osteoclast effect of betamethasone on DPSCs and stem cells from human exfoliated deciduous teeth (SHED) were evaluated. DESIGN The proliferative effect of betamethasone on DPSCs was analyzed using a cholecystokinin octapeptide assay. The anti-inflammatory effect of betamethasone was investigated using quantitative polymerase chain reaction (qPCR) and ELISA. The anti-inflammatory mechanism was explored using qPCR, Western blot, and immunofluorescence staining. The osteo-/odontogenic differentiation and osteoclast effect of betamethasone on DPSCs and SHED were detected by qPCR. RESULTS 1 μg L-1 betamethasone was found to have the strongest effect on DPSCs proliferation. The expression of pro-inflammatory cytokines and mediators, as well as prostaglandin E2 (PGE2) were significantly decreased following treatment with betamethasone in LPS- stimulated DPSCs. They were also decreased in response to an NF-κB inhibitor, Bay 11-7082. Betamethasone and Bay 11-7082 significantly inhibited the expression of p-p65 and promoted the nuclear exclusion of p65. Gene expression associated with osteo-/odontogenic differentiation was significantly up-regulated in betamethasone and osteogenic media (OM) treated groups. The ratio of the receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) at the mRNA level was suppressed in DPSCs and elevated in SHED. CONCLUSIONS Betamethasone has an anti-inflammatory effect on LPS- stimulated DPSCs through a blockade of NF-κB activation and exhibits an osteo-/odonto-inductive effect on DPSCs and SHED. Although betamethasone displays an osteoclast effect on SHED.

Keywords: lps stimulated; effect betamethasone; betamethasone; dpscs; effect

Journal Title: Archives of oral biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.