LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficacy of alpha-mangostin for antimicrobial activity against endodontopathogenic microorganisms in a multi-species bacterial-fungal biofilm model.

Photo by bostonpubliclibrary from unsplash

OBJECTIVE To determine the activity of alpha-mangostin on preformed bacterial-fungal multi-species biofilms in vitro, and to ascertain the impact on metabolic activity, biofilm structure and viability. DESIGN Inhibitory concentrations (ICs)… Click to show full abstract

OBJECTIVE To determine the activity of alpha-mangostin on preformed bacterial-fungal multi-species biofilms in vitro, and to ascertain the impact on metabolic activity, biofilm structure and viability. DESIGN Inhibitory concentrations (ICs) for alpha-mangostin against planktonic cultures of Candida albicans, Enterococcus faecalis, Lactobacillus rhamnosus, and Streptococcus gordonii were determined using a standard broth microdilution method. Single and multi-species (all species 1:1:1:1) biofilms were grown on polystyrene coverslips in Roswell Park Memorial Institute Medium for 48 h. The biofilms were then exposed to 0.2% (w/v) alpha-mangostin for 24 h. These concentrations were selected based on pilot experiments and the solubility of these compounds. 2% (v/v) chlorhexidine was used as a positive control and Roswell Park Memorial Institute Medium as a negative control. The metabolic activity of the biofilms after exposure was measured using metabolic (XTT) assays. Biofilms were visualised and quantified using fluorescent BacLight™ LIVE/DEAD staining. The biofilms were assessed for cell viability by culture and colony counting (CFU/mL). RESULTS 8 mg/L of alpha-mangostin was cidal against planktonic bacteria and 1000 mg/L for Candida. Alpha-mangostin was most active against L. rhamonosus biofilms and least active against C. albicans biofilm (metabolism inhibited by 99% and 78%, respectively). Alpha-mangostin exposure reduced the number of viable cells in the biofilms. CONCLUSION Alpha-mangostin inhibited the metabolic activity of bacterial-fungal biofilms effectively. The anti-biofilm activity of alpha-mangostin was comparable to chlorhexidine and thus has potential as a novel agent for endodontic therapy.

Keywords: multi species; biofilm; alpha mangostin; bacterial fungal; activity

Journal Title: Archives of oral biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.