LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational methods for Gene Regulatory Networks reconstruction and analysis: A review

Photo from wikipedia

In the recent years, the vast amount of genetic information generated by new-generation approaches, have led to the need of new data handling methods. The integrative analysis of diverse-nature gene… Click to show full abstract

In the recent years, the vast amount of genetic information generated by new-generation approaches, have led to the need of new data handling methods. The integrative analysis of diverse-nature gene information could provide a much-sought overview to study complex biological systems and processes. In this sense, Gene Regulatory Networks (GRN) arise as an increasingly-promising tool for the modelling and analysis of biological processes. This review is an attempt to summarize the state of the art in the field of GRNs. Essential points in the field are addressed, thereof: (a) the type of data used for network generation, (b) machine learning methods and tools used for network generation, (c) model optimization and (d) computational approaches used for network validation. This survey is intended to provide an overview of the subject for readers to improve their knowledge in the field of GRN for future research.

Keywords: analysis; gene regulatory; used network; computational methods; regulatory networks; gene

Journal Title: Artificial intelligence in medicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.