LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Learning personalized ADL recognition models from few raw data

Photo from wikipedia

Recognition of activities of daily living (ADL) is an essential component of assisted living systems based on actigraphy. This task can nowadays be performed by machine learning models which are… Click to show full abstract

Recognition of activities of daily living (ADL) is an essential component of assisted living systems based on actigraphy. This task can nowadays be performed by machine learning models which are able to automatically extract and learn relevant features but, most of time, need to be trained with large amounts of data collected on several users. In this paper, we propose an approach to learn personalized ADL recognition models from few raw data based on a specific type of neural network called matching network. The interest of this few-shot learning approach is three-fold. Firstly, people perform activities their own way and general models may average out important individual characteristics unlike personalized models that could thus achieve better performance. Secondly, gathering large quantities of annotated data from one user is time-consuming and threatens privacy in a medical context. Thirdly, matching networks are by nature weakly dependent on the classes they are trained on and can generalize easily to new activities without needing extra training, thus making them very versatile for real applications. Our results show the effectiveness of the proposed approach compared to general neural network models, even in situations with few training data.

Keywords: adl recognition; recognition models; personalized adl; recognition; raw data; models raw

Journal Title: Artificial intelligence in medicine
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.