LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pathologic liver tumor detection using feature aligned multi-scale convolutional network

Photo from wikipedia

The detection of the most common type of liver tumor, that is, hepatocellular carcinoma (HCC), is one essential step to liver pathology image analysis. In liver tissue, common cell change… Click to show full abstract

The detection of the most common type of liver tumor, that is, hepatocellular carcinoma (HCC), is one essential step to liver pathology image analysis. In liver tissue, common cell change phenomena such as apoptosis, necrosis, and steatosis are similar in tumor and benign tissue. Hence, the detection of HCC may fail when the patches covered only limited tissue region without enough neighboring cell structure information. To address this problem, a Feature Aligned Multi-Scale Convolutional Network (FA-MSCN) architecture is proposed in this paper for automatic liver tumor detection based on whole slide images (WSI). The proposed network integrates the features obtained at different magnification levels to improve the detection performance by referencing more neighboring information. The FA-MSCN consists of two parallel convolutional networks in which one would extract high-resolution features and the other would extract low-resolution features by atrous convolution. The low-resolution features then go through central cropping, upsampling, and concatenation with high-resolution features for final classification. The experimental results demonstrated that Multi-Scale Convolutional Network (MSCN) improves the detection performance compared to Single-Scale Convolutional Network (SSCN), and that the FA-MSCN is superior to both SSCN and MSCN, demonstrating on HCC detection.

Keywords: scale convolutional; tumor; liver; detection; convolutional network; network

Journal Title: Artificial intelligence in medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.