LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mathematical prediction of the compressive strength of bacterial concrete using gene expression programming

Photo from wikipedia

Abstract The impact of microbial calcium carbonate on concrete strength has been extensively evaluated in the literature. However, there is no predicted equation for the compressive strength of concrete incorporating… Click to show full abstract

Abstract The impact of microbial calcium carbonate on concrete strength has been extensively evaluated in the literature. However, there is no predicted equation for the compressive strength of concrete incorporating ureolytic bacteria. Therefore, in the present study, 69 experimental tests were taken into account to introduce a new predicted mathematical formula for compressive strength of bacterial concrete with different concentrations of calcium nitrate tetrahydrate, urea, yeast extract, bacterial cells and time using Gene Expression Programming (GEP) modelling. Based on the results, statistical indicators (MAE, RAE, RMSE, RRSE, R and R2) proved the capability of the GEP 2 model to predict compressive strength in which minimum error and high correlation were achieved. Moreover, both predicted and actual results indicated that compressive strength decreased with the increase in nutrient concentration. In contrast, the compressive strength increased with increased bacterial cells concentration. It could be concluded that GEP2 were found to be reliable and accurate compared to that of the experimental results.

Keywords: compressive strength; bacterial concrete; strength; using gene; gene expression; strength bacterial

Journal Title: Ain Shams Engineering Journal
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.