LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Space weather effects on lower ionosphere: First investigation from Bharati station during 34th Indian scientific expedition to Antarctica

Photo from wikipedia

Abstract We investigate the solar flare effects on the D-region of the ionosphere with the help of VLF (Very Low Frequency) radio waves using a portable E-field system from Antarctica… Click to show full abstract

Abstract We investigate the solar flare effects on the D-region of the ionosphere with the help of VLF (Very Low Frequency) radio waves using a portable E-field system from Antarctica during the summer period of 34th Indian scientific expedition. Two GPS time synchronized VLF receivers, one located at Bharati, Antarctica (geographical latitude 69.40°S, longitude 76.18°E) and another located at Tripura, India (geographical latitude 23.84°N, longitude 91.28°E) were operated simultaneously to infer common mode changes in the lower ionosphere for a number of solar flares events. The two systems constantly monitored the carrier amplitude and phase of the MSK (Minimum Shift Keying) modulated navy transmitter located in Australia (Callsign: NWC, 19.8 kHz, geographical latitude 21.88°S, longitude 114.13°E), around 5.6 Mm great circle distance from the two receivers. The results are interpreted in terms of Earth-ionosphere wave-guide characteristics. A Long Wave Propagation Capability (LWPC) model study is also performed to infer the changes in the daytime electron density in polar D-region ionosphere during the solar flares. The exponential fit of the modeled electron density change with average X-ray flux change shows an excellent correlation (R 2 value 0.95). The exponential fit is utilized to infer the daytime electron density change in the polar ionosphere during solar flare events. The analyses indicate that small solar flares of class ‘C’ can be very effectively detected with the portable antenna system even if the receiver is located in polar coastal region compared to equatorial region. The expedition results also demonstrate the feasibility of using portable VLF receivers from the coastal stations for monitoring the polar lower ionosphere from Antarctica and open up new opportunities for long term exploration.

Keywords: lower ionosphere; expedition; scientific expedition; 34th indian; region; indian scientific

Journal Title: Advances in Space Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.