LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of the rheological properties of water and Martian soil simulant mixtures for engineering applications on the red planet

Photo from archive.org

Abstract The rheological properties of mixtures of water and the Martian soil simulant JSC-Mars-1A are investigated by preparing and testing samples at various solids concentrations. The results indicate that the… Click to show full abstract

Abstract The rheological properties of mixtures of water and the Martian soil simulant JSC-Mars-1A are investigated by preparing and testing samples at various solids concentrations. The results indicate that the dispersion is viscoelastic and, at small timescales (∼0.1 s), reacts to sudden strain as an elastic solid. At longer timescales the dispersion behaves like a Bingham fluid and exhibits a yield stress. Hysteresis loops show that rapid step-changes (2 s duration) of shear-rate result in thixotropic behaviour, but slower changes (>10 s duration) can result in rheopexy. These observations are explained with the breakdown and recovery of the packing structure under stress. The rheological information is used to generate practical tools, such as the system curve and the Moody chart that can be used for designing piping systems, and calculating pump sizes and pressure requirements.

Keywords: soil simulant; water martian; rheological properties; martian soil

Journal Title: Advances in Space Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.