LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polar traveling ionospheric disturbances inferred with the B-spline method and associated scintillations in the Southern Hemisphere

Photo from wikipedia

Abstract A new method for analyzing travelling ionospheric disturbances (TIDs) is developed by using two B-spline basis functions of degree 4 on the Total Electron Content (TEC) data from the… Click to show full abstract

Abstract A new method for analyzing travelling ionospheric disturbances (TIDs) is developed by using two B-spline basis functions of degree 4 on the Total Electron Content (TEC) data from the ground-based Global Positioning System (GPS) receivers. This method enhances the spatial resolution to about 0.1° (geographic latitude) × 0.1° (geographic longitude), which is useful in studying all scales (small, medium and large) TIDs. Using this method, we investigated TIDs and their associated scintillation on 18–19 July 2013 at Southern Hemisphere and found phase scintillation is more sensitive than amplitude scintillation to the TIDs at South Pole. To see the full impact of TIDs on scintillation, we have used a proxy phase scintillation index, calculated using geodetic GPS receivers over Antarctica. We have verified the presence of TIDs during these two days by using a Global Navigation Satellite System (GNSS)-TEC single station approach and SuperDARN slant range signals. Our results show the TEC fluctuations are associated with ionospheric scintillation. The shape of TIDs, their elongation and flattening along/across the geographic latitude/longitude, seems to be related to the magnitude and occurrence of ionospheric scintillations. Magnetospheric particle precipitation boost TEC gradients and generate stronger amplitude scintillation, however, large-scale plasma irregularities cause overall enhancement in magnitude of the phase scintillation index. Due to the high turbulence in the polar ionosphere, TIDs change their shapes quite quickly and/or may disappear in the background ionosphere. B-spline TIDs analysis method is very useful in identifying the visible as well as hidden TIDs parts in the polar ionosphere. For the first time, ionospheric scintillation has been investigated in the vicinity of TIDs at high- latitude in the southern hemisphere. Further, the presented B-spline TIDs analysis method is unique and simple in itself as it uses GPS receiver processed TEC data as the primary input. Our results show that at polar latitude it is not necessary that TIDs always appear near the high TEC regions. Usefulness of the B-spline TIDs detection method has been demonstrated in analyzing TIDs at all geographic locations and different solar activity conditions by comparing B-spline TIDs method produced results with the previous case studies.

Keywords: ionospheric disturbances; scintillation; method; southern hemisphere; phase scintillation; spline tids

Journal Title: Advances in Space Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.