LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayesian network-based extraction of lunar impact craters from optical images and DEM data

Photo from wikipedia

Abstract Impact craters are among the most noticeable geomorphological features on the planetary surface and yield significant information about terrain evolution and the history of the solar system. Thus, the… Click to show full abstract

Abstract Impact craters are among the most noticeable geomorphological features on the planetary surface and yield significant information about terrain evolution and the history of the solar system. Thus, the recognition of impact craters is an important branch of modern planetary studies. Aiming at addressing problems associated with the insufficient and inaccurate detection of lunar impact craters, a decision fusion method within the Bayesian network (BN) framework is developed in this paper to handle multi-source information from both optical images and associated digital elevation model (DEM) data. First, we implement the edge-based method for efficiently searching crater candidates which are the image patches that can potentially contain impact craters. Secondly, the multi-source representations of an impact crater derived from both optical images and DEM data are proposed and constructed to quantitatively describe the two-dimensional (2D) and three-dimensional (3D) morphology, consisting of Histogram of Oriented Gradient (HOG), Histogram of Multi-scale Slope (HMS) and Histogram of Multi-scale Aspect (HMA). Finally, a BN-based framework integrates the multi-source representations of impact craters, which can provide reductant and complementary information, for distinguishing craters from non-craters. To evaluate the effectiveness and robustness of the proposed method, experiments were conducted on three lunar scenes using both orthoimages from the Lunar Reconnaissance Orbiter (LRO) and DEM data acquired by the Lunar Orbiter Laser Altimeter (LOLA). Experimental results demonstrate that integrating optical images with DEM data significantly decreases the number of false positives compared with using optical images alone, with F1-score of 84.8% on average. Moreover, compared with other existing fusion methods, our proposed method was quite advantageous especially for the detection of small-scale craters with diameters less than 1000 m.

Keywords: impact craters; lunar impact; dem data; optical images; images dem

Journal Title: Advances in Space Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.