Abstract This work presents, for the first time, the analysis of the occurrence of ionospheric irregularities during geomagnetic storms at Tucuman, Argentina, a low latitude station in the Southern American… Click to show full abstract
Abstract This work presents, for the first time, the analysis of the occurrence of ionospheric irregularities during geomagnetic storms at Tucuman, Argentina, a low latitude station in the Southern American longitudinal sector (26.9°S, 294.6°E; magnetic latitude 15.5°S) near the southern crest of the equatorial ionization anomaly (EIA). Three geomagnetic storms occurred on May 27, 2017 (a month of low occurrence rates of spread-F), October 12, 2016 (a month of transition from low to high occurrence rates of spread-F) and November 7, 2017 (a month of high occurrence rates of spread-F) are analyzed using Global Positioning System (GPS) receivers and ionosondes. The rate of change of total electron content (TEC) Index (ROTI), GPS Ionospheric L-band scintillation, the virtual height of the F-layer bottom side (h'F) and the critical frequency of the F2 layer (foF2) are considered. Furthermore, each ionogram is manually examined for the presence of spread-F signatures. The results show that, for the three events studied, geomagnetic activity creates favorable conditions for the initiation of ionospheric irregularities, manifested by ionogram spread-F and TEC fluctuation. Post-midnight irregularities may have occurred due to the presence of eastward disturbance dynamo electric fields (DDEF). For the May storm, an eastward over-shielding prompt penetration electric field, (PPEF) is also acting. A possibility is that the PPEF is added to the DDEF and produces the uplifting of the F region that helps trigger the irregularities. Finally, during October and November, strong GPS L band scintillation is observed associated with strong range spread-F (SSF), that is, irregularities extending from the bottom-side to the topside of the F region.
               
Click one of the above tabs to view related content.