LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atmospheric reentry hemisphere prediction for prograde orbits using logical disjunction

Photo by rrruthie from unsplash

Abstract A unique logic-based algorithm for atmospheric reentry hemisphere prediction is presented for spacecraft in low-eccentricity, prograde low Earth orbits at altitudes of 300 km and lower. Using two-line element (TLE)… Click to show full abstract

Abstract A unique logic-based algorithm for atmospheric reentry hemisphere prediction is presented for spacecraft in low-eccentricity, prograde low Earth orbits at altitudes of 300 km and lower. Using two-line element (TLE) data for initial orbit conditions, coupled with coarse estimates for spacecraft aerodynamic characteristics, the algorithm relies on logical disjunction operations based on a dual analysis of histogram and two-weighted Gaussian probability density function (PDF) fits of predicted reentry latitude data. The algorithm requires the execution of a series of parametric simulations to determine the reentry hemisphere for variations in spacecraft aerodynamic coefficients and drag reference area. When implemented, the algorithm yields accurate hemisphere predictions on average 15 days from reentry as demonstrated by historical reentry cases from 1979 to 2018. All reentry cases were selected to demonstrate the algorithm’s ability to deliver accurate reentry hemisphere predictions for spacecraft with varying physical size and mass, and reentering during different periods of solar cycle activity.

Keywords: hemisphere prediction; reentry hemisphere; logical disjunction; atmospheric reentry; reentry

Journal Title: Advances in Space Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.