LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An adaptive fully-Lagrangian meshless method for incompressible laminar flow airfoil studies

Photo by eddiepipocas from unsplash

Laminar incompressible flow around a NACA0012 airfoil placed in a free-stream at various incidences has been revisited with the use of a fully-Lagrangian meshless method based on a Smoothed Particle… Click to show full abstract

Laminar incompressible flow around a NACA0012 airfoil placed in a free-stream at various incidences has been revisited with the use of a fully-Lagrangian meshless method based on a Smoothed Particle Hydrodynamics (SPH) formulation. Spatial adaptivity has been incorporated in the scheme via splitting and merging of SPH particles employing zonal criteria. In addition, a novel algorithm has been proposed here so that particle merging may be achieved, ensuring the robustness, accuracy and efficiency of the computational simulations. The results obtained have been benchmarked against available data from mesh-based methods. Good agreement has been found both in steady and unsteady flow regimes. Overall, the present work demonstrated the effectiveness and competitiveness of this meshfree approach for detailed studies in aerodynamics.

Keywords: fully lagrangian; meshless method; laminar; lagrangian meshless; flow; airfoil

Journal Title: Aerospace Science and Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.