LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An investigation on the effect of pitchwise endwall design in a turbine cascade at different incidence angles

Photo from wikipedia

Abstract This paper describes the effects of non-axisymmetric endwall profiling on the aerodynamic performance of a linear turbine cascade at different incidence angles. The sinusoidal profiling is carried out with… Click to show full abstract

Abstract This paper describes the effects of non-axisymmetric endwall profiling on the aerodynamic performance of a linear turbine cascade at different incidence angles. The sinusoidal profiling is carried out with constant profile curvature along the mean streamline path. Three different profiles, with varying hump to dip height, are analyzed numerically and the performances are compared with the planar profile. Reynolds Averaged Navier Stokes (RANS) equations are solved in their conservative form using Finite Volume Method with SST turbulence model. The calculated results indicate that the profiled endwall minimizes the lateral movement of weaker boundary layer fluid from the hub-pressure side corner. In comparison with planar case, the flow deviations are largely contained with endwall profiling but closer to the endwall it enhances the overturning and secondary flow kinetic energy. The reduction in loss coefficient is estimated to be 1.3%, 8.7% and 38% for incidence angles of −10°, nominal and +15° respectively. The sinusoidal profiling has brought down the pitch averaged flow deviation and secondary flow kinetic energy at nominal and positive incidence angles but the impact is insignificant at negative incidence. Profiling minimizes the rolling up of the passage vortex and makes the passage vortex to migrate closer to the endwall. This flow modification brings down the losses in the core flow but enhances the losses near the endwall.

Keywords: incidence; turbine cascade; different incidence; incidence angles; endwall; cascade different

Journal Title: Aerospace Science and Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.