Abstract Uncertainties in control effectiveness, and moment coefficients are among the practical challenges in control of flight vehicles. Adaptive control is known as a proper method to handle uncertain systems,… Click to show full abstract
Abstract Uncertainties in control effectiveness, and moment coefficients are among the practical challenges in control of flight vehicles. Adaptive control is known as a proper method to handle uncertain systems, and has been used in numerous applications to improve system performance in the presence of system uncertainties. This paper presents a new method of synthesizing an acceleration autopilot for a guided spinning rocket, which is a class of uncertain, non-square multi-input/multi-output system. Firstly, a nonlinear and coupled six-degree-of-freedom (6-DoF) dynamic model is established, which is used to evaluate the performance of the proposed adaptive autopilot during the whole operating cycle. Secondly, a simple design procedure based on square-up method and linear matrix inequality (LMI) is proposed to design the autopilot, allowing a globally stable adaptive output feedback law to be generated. Finally, the adaptive output feedback autopilot is applied to the nonlinear 6-DoF dynamic model and it is shown to result in stable tracking in the presence of uncertainties.
               
Click one of the above tabs to view related content.