LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characteristics and model of the initial spray caused by an aircraft elastic tire rolling on the water-contaminated runway

Photo from wikipedia

Abstract The initial spray caused by a rolling aircraft elastic pneumatic tire is studied by Smoothed Particle Hydrodynamics method. The tire spray is divided into four types: bow wave, rooster… Click to show full abstract

Abstract The initial spray caused by a rolling aircraft elastic pneumatic tire is studied by Smoothed Particle Hydrodynamics method. The tire spray is divided into four types: bow wave, rooster tail, impact-generated side plume and wave-generated side plume. The distributions of the particles involved in the different types of spray in the initial unperturbed water film are studied, with the relationship between the momentum transfer, the relative position of water particles and the aircraft tire being proposed. The impact-generated side plume is caused by the direct impact of tire, while the wave-generated side plume is caused by the breakup of the wave developed by the tire. The particles involved in the wave-generated side plume all come from a parabolic region inside the strip of initial injected particles at a given time. The width of the parabolic region reduces with the increasing water depth. The strips and the kinematic characteristics of particles at any time are both similar. A model is developed to predict the direction and magnitude of the momentum transfer velocity in water film based on the similarity of the strips and the kinematic characteristics of the particles, which works well for the cases with small tire load and thick water film.

Keywords: tire; water; generated side; side plume; initial spray

Journal Title: Aerospace Science and Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.