LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Buzz evolution process investigation of a two-ramp inlet with translating cowl

Photo from wikipedia

Abstract In order to satisfy the requirement of high integration, the inlet equipped with translating cowl, which is able to adjust the geometries of combustor and inlet simultaneously, is proposed… Click to show full abstract

Abstract In order to satisfy the requirement of high integration, the inlet equipped with translating cowl, which is able to adjust the geometries of combustor and inlet simultaneously, is proposed and studied. Numerical investigations are conducted to obtain hysteresis loop, stability boundary and buzz evolution process with various internal contraction ratios in wide range of flight Mach numbers. The dynamic mesh method is utilized to simulate the geometric adjustment. The results reveal that the buzz evolution process has obvious hysteretic characteristics under the change of translating direction. Meanwhile, the mechanism of inlet buzz mode transition is provided. Then, the effects that the translating velocities have on the oscillatory frequency, position of separation leading edge and dynamic drag are given. The higher velocity is able to restrain the intension of separation oscillation and enlarge the stable region, but has insignificant effect on the reduction of oscillatory frequency and dynamic drag. For specific velocities, there is no oscillation. Therefore, the appropriate velocity can be selected for the improvement of inlet stability. This research gives a full insight into the dynamic performance of a hypersonic variable-geometry inlet.

Keywords: buzz evolution; evolution process; inlet

Journal Title: Aerospace Science and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.