Abstract The configuration of internal moving masses is a key challenge for applying moving mass control technology to flight vehicle control. A novel configuration with a large mass ratio moving… Click to show full abstract
Abstract The configuration of internal moving masses is a key challenge for applying moving mass control technology to flight vehicle control. A novel configuration with a large mass ratio moving mass and reaction jets is proposed for bank-to-turn control. The control system of the proposed configuration consists of the attitude dynamics and the moving mass dynamics, which are coupled by the additional inertia moment of moving mass. To deal with the coupling, the integrated control of an attitude-servo system and a lateral underactuated control based on immersion and invariance theory is presented. To overcome the uncertainties in the flight vehicle model, immersion and invariance theory is employed to design an estimator for the unknown aerodynamic parameters. The estimator has an additional nonlinear term which adjusts the performance of the estimation error. The simulation results show that the proposed attitude-servo controller for the longitudinal subsystem can enhance the response of the system and the underactuated controller of the lateral subsystem can reduce fuel consumption.
               
Click one of the above tabs to view related content.