LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Overall and component basis performance evaluations for turbojet engines under various optimal operating conditions

Photo from wikipedia

Abstract An evaluation using various operating conditions such as the maximums of: power, power density, ECOP and ECOL optimization functions for the analysis of turbojet engines is reported. Although, these… Click to show full abstract

Abstract An evaluation using various operating conditions such as the maximums of: power, power density, ECOP and ECOL optimization functions for the analysis of turbojet engines is reported. Although, these well-known optimization functions were applied for various cycle types by researchers, the application of these methods for aircraft turbojet engines have not been explored. To this effect, a Brayton cycle including diffuser and nozzle together with the compressor, combustion chamber and turbine with various irreversibilities was considered. Engine irreversibilities are taken into account through appropriate efficiencies for each component. Different parameters influencing the cycle performance are examined such as compressor pressure ratio, cycle temperature ratio, compressor and turbine efficiencies, altitude and flight Mach number. The cycle performance was assessed utilizing the maximum power (MP), power density (MPD), Ecological Coefficient of Performance (ECOP) and Ecological Function (ECOL) conditions. In addition, the size variation of individual engine components and their contribution to the overall performance was also assessed under maximum power, power density, ECOP and ECOL conditions. The comparisons show that the design parameters at the maximum ECOL and maximum ECOP conditions may lead to smaller, more efficient and lower fuel consumption for turbojet engines than those at maximum power and maximum power density. However, on a component basis (compressor, combustion chamber, turbine and nozzle) the engine power, thrust, thermal efficiency, size and TSFC can be enhanced when utilizing the MP, MPD, ECOP and ECOL optimization functions.

Keywords: cycle; turbojet engines; performance; power density; power; operating conditions

Journal Title: Aerospace Science and Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.