BACKGROUND AND AIMS Proteoglycan 4 (Prg4) has a high structural similarity with the established atherosclerosis-modulating proteoglycan versican, but its role in atherogenesis is still unknown. Therefore, the impact of Prg4… Click to show full abstract
BACKGROUND AND AIMS Proteoglycan 4 (Prg4) has a high structural similarity with the established atherosclerosis-modulating proteoglycan versican, but its role in atherogenesis is still unknown. Therefore, the impact of Prg4 deficiency on macrophage function in vitro and atherosclerosis susceptibility in vivo was investigated. METHODS The presence and localization of Prg4 was studied in atherosclerotic lesions. Furthermore, the effect of Prg4 deficiency on macrophage foam cell formation, cholesterol efflux and lipopolysaccharide (LPS) response was determined. Finally, susceptibility for atherosclerotic lesion formation was investigated in bone marrow-specific Prg4 knockout (KO) mice. RESULTS Prg4 mRNA expression was induced 91-fold (p<0.001) in murine initial atherosclerotic lesions and Prg4 protein co-localized with human lesional macrophages. Murine Prg4 KO macrophages showed increased foam cell formation (+2.1-fold, p<0.01). In parallel, the expression of the cholesterol efflux genes ATP-binding cassette transporter A1 and scavenger receptor type B1 was lower (-35%, p<0.05;-40%, p<0.05) in Prg4 KO macrophages. This translated into an impaired cholesterol efflux to high-density lipoprotein (-13%, p<0.001) and apolipoprotein A1 (-8%, p<0.05). Furthermore, Prg4 KO macrophages showed an impaired LPS-induced rise in TNFα secretion as compared to wild-type controls (-31%, p<0.001), indicating a reduced inflammatory response. Combined, these pro- and anti-atherogenic effects did not translate into a significant difference in atherosclerotic lesion formation upon bone marrow-specific deletion of Prg4 in low-density lipoprotein receptor KO mice. CONCLUSIONS Prg4 is present in macrophages in both murine and human atherosclerotic lesions and critically influences macrophage function, but deletion of Prg4 in bone marrow-derived cells does not affect atherosclerotic lesion development.
               
Click one of the above tabs to view related content.