LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance of a deep learning algorithm for the evaluation of CAD-RADS classification with CCTA.

Photo from wikipedia

BACKGROUND AND AIMS Artificial intelligence (AI) is increasing its role in diagnosis of patients with suspicious coronary artery disease. The aim of this manuscript is to develop a deep convolutional… Click to show full abstract

BACKGROUND AND AIMS Artificial intelligence (AI) is increasing its role in diagnosis of patients with suspicious coronary artery disease. The aim of this manuscript is to develop a deep convolutional neural network (CNN) to classify coronary computed tomography angiography (CCTA) in the correct Coronary Artery Disease Reporting and Data System (CAD-RADS) category. METHODS Two hundred eighty eight patients who underwent clinically indicated CCTA were included in this single-center retrospective study. The CCTAs were stratified by CAD-RADS scores by expert readers and considered as reference standard. A deep CNN was designed and tested on the CCTA dataset and compared to on-site reading. The deep CNN analyzed the diagnostic accuracy of the following three Models based on CAD-RADS classification: Model A (CAD-RADS 0 vs CAD-RADS 1-2 vs CAD-RADS 3,4,5), Model 1 (CAD-RADS 0 vs CAD-RADS>0), Model 2 (CAD-RADS 0-2 vs CAD-RADS 3-5). Time of analysis for both physicians and CNN were recorded. RESULTS Model A showed a sensitivity, specificity, negative predictive value, positive predictive value and accuracy of 47%, 74%, 77%, 46% and 60%, respectively. Model 1 showed a sensitivity, specificity, negative predictive value, positive predictive value and accuracy of 66%, 91%, 92%, 63%, 86%, respectively. Conversely, Model 2 demonstrated the following sensitivity, specificity, negative predictive value, positive predictive value and accuracy: 82%, 58%, 74%, 69%, 71%, respectively. Time of analysis was significantly lower using CNN as compared to on-site reading (530.5 ± 179.1 vs 104.3 ± 1.4 sec, p=0.01) CONCLUSIONS: Deep CNN yielded accurate automated classification of patients with CAD-RADS.

Keywords: predictive value; cad rads; ccta; rads classification

Journal Title: Atherosclerosis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.