Abstract Volatile organic compounds (VOCs) from vehicle evaporative emissions contribute substantially to photochemical air pollution. Yet, few studies of the characteristics of VOCs emitted from vehicle evaporative emissions have been… Click to show full abstract
Abstract Volatile organic compounds (VOCs) from vehicle evaporative emissions contribute substantially to photochemical air pollution. Yet, few studies of the characteristics of VOCs emitted from vehicle evaporative emissions have been published. We investigate the characteristics of 57 VOCs in hot soak, 24 h diurnal and 48 h diurnal emissions by applying the Sealed Housing Evaporative Determination unit (SHED) test to three modern passenger cars (one US Tier 2 and two China IV vehicles) using two different types of gasoline. The characteristics of the VOCs from the hot soak, 24 h diurnal and 48 h diurnal emissions were different due to their different emission mechanisms. In the hot soak emissions, toluene, isopentane/n-pentane, and 2,2,4-trimethylpentane were dominant species. In the 24 h and 48 h diurnal emissions, isopentane and n-pentane were dominant species. Toluene was the third most dominant component in the 24 h diurnal emissions but decreased by a mass of 42%–80% in the 48 h diurnal emissions. In the hot soak, 24 h diurnal and 48 h diurnal emissions, alkanes were generally the dominant hydrocarbons, followed by aromatics and olefins. However, owing to different evaporative emission mechanisms, the weight percentages of the aromatic hydrocarbons decreased and the weight percentages of the alkanes increased from the hot soak test to the 24 h diurnal and 48 h diurnal tests for each vehicle. The dominant contributors to the ozone formation potentials (OFPs) were also different in the hot soak, 24 h diurnal and 48 h diurnal emissions. The OFPs (g O3/g VOC) of the hot soak emissions were higher than those of the 24 h and 48 h diurnal emissions. In addition, the combined effect of decreasing the olefin and aromatic contents of gasoline on vehicle evaporative emissions was investigated. The aromatics all decreased substantially in the hot soak, 24 h and 48 h diurnal emissions, and the total masses of the VOCs and OFPs decreased, with the greatest reduction occurring in the hot soak emissions when the fuel aromatic and olefin contents were reduced.
               
Click one of the above tabs to view related content.