LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulation of extreme heat events over the Valencia coastal region: Sensitivity to initial conditions and boundary layer parameterizations

Photo from wikipedia

Abstract The Valencia coastal region (Western Mediterranean) is especially sensitive to extreme heat events, where they are really common. However, due to its geophysical characteristics and climatic conditions, the incidence… Click to show full abstract

Abstract The Valencia coastal region (Western Mediterranean) is especially sensitive to extreme heat events, where they are really common. However, due to its geophysical characteristics and climatic conditions, the incidence of high and extreme temperatures may still be modulated over this area by means of sea breeze circulations, defining a Sea Breeze Convergence Zone (SBCZ) due to the meet and interaction of these mesoscale conditions and Western synoptic-scale wind regimes. A proper definition of this convergence zone is of significant importance over the study area for the simulation and forecast of intense-heat meteorological events. This study analyses a week period in August 2010 over this area, which alternates the presence of meteorological conditions prone to high and extreme temperatures with sea breeze conditions that temper these extreme temperatures. The simulations have been performed using the mesoscale model Regional Atmospheric Modeling System (RAMS). The analysis focuses on the ability of different initial conditions and technical features and two widely used planetary boundary layer parameterizations to forecast and reproduce the observed high and extreme temperatures, as well as to properly capture the main associated atmospheric patterns. It has been found that an increased horizontal resolution in the initial atmospheric fields produces a better representation of the regional and local wind flows simulated by the mesoscale model, leading to an accurate characterization of the temperature fields when these wind circulations dominate over the area of study. However, no significant differences are obtained within the intense-heat situations, associated with atmospheric synoptic-scale forcings. Regarding PBL parameterizations, the local PBL scheme tends to underestimate the daytime temperatures, while the non-local scheme produces higher temperatures than the local scheme, skilfully reproducing the observations. Additionally, the non-local scheme overestimates temperatures at night-time, but it suitably captures the observed high minimum temperatures produced by the Western synoptic conditions.

Keywords: heat events; heat; coastal region; extreme heat; extreme temperatures; valencia coastal

Journal Title: Atmospheric Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.