LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Different effects of running wheel exercise and skilled reaching training on corticofugal tract plasticity in hypertensive rats with cortical infarctions

Photo from wikipedia

The approaches that facilitate white matter plasticity may prompt functional recovery after a stroke. The effects of different exercise methods on motor recovery in stroke rats have been investigated. However,… Click to show full abstract

The approaches that facilitate white matter plasticity may prompt functional recovery after a stroke. The effects of different exercise methods on motor recovery in stroke rats have been investigated. However, it is not clear whether their effects on axonal plasticity different. The aim of this study was to compare the effects of the forced running wheel exercise (RWE) and skilled reaching training (SRT) on axonal plasticity and motor recovery. Cortical infarctions were generated in stroke-prone renovascular hypertensive rats. The rats were randomly divided into the following three groups: the control (Con) group, the RWE group, and the SRT group. A sham group was also included. The mNSS and forelimb grip strength tests were performed on days 3, 7, 14, 21, 28, 35, and 42 after ischemia. The anterograde tract tracer biotinylated dextran amine (BDA) was injected into the rats to trace the axonal plasticity of the contralesional corticofugal tracts. Compared with the Con group, the mNSS scores in the SRT and RWE groups decreased on day 28 (P<0.05) and on days 35 and 42 (P<0.01). The grip strength in the SRT group increased relative to that in the RWE group at 42day post-ischemia (P<0.01). Both the RWE and SRT groups exhibited enhanced plasticity of the contralesional corticofugal tract axons at the level of the red nucleus (P<0.01) and the cervical enlargement (P<0.01). More contralateral corticorubral tract remodeling was observed at the red nucleus level in the SRT group than in the RWE group (P<0.001). Taken together, these results suggest that SRT may enhance axon plasticity in the corticorubral tract more effectively than the forced RWE and is associated with better motor recovery after cerebral ischemia.

Keywords: rwe; group; tract; running wheel; exercise; plasticity

Journal Title: Behavioural Brain Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.