Dysfunction within the mitogen-activated protein kinase (MAPK) cascade has been recognised as a pathological feature of schizophrenia, however the possible mechanistic connection to the disease phenotype remains unexplored. Using the… Click to show full abstract
Dysfunction within the mitogen-activated protein kinase (MAPK) cascade has been recognised as a pathological feature of schizophrenia, however the possible mechanistic connection to the disease phenotype remains unexplored. Using the maternal immune activation (MIA) rat model of schizophrenia, the present study investigated the involvement of prefrontal cortex (PFC) MAPK in sensorimotor gating and adaptive learning deficits via western blot, pre-pulse inhibition (PPI) testing, and a contingency degradation operant task, respectively. Principle findings identified a negative relationship between basal MAPK expression and PPI exclusively in MIA rats, suggesting a modulatory role for MAPK in sensorimotor gating pathology. In addition, the correlation between MAPK and adaptive learning capacity observed in control rats was absent for rats exposed to MIA. Findings are considered with respect to the glutamatergic NMDA hypofunction theory of schizophrenia, as well as the critical role of PFC in contingency learning.
               
Click one of the above tabs to view related content.